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An edge-based smoothed finite element method (ES-FEM) for static, free vibration and buckling analyses
of Reissner–Mindlin plates using 3-node triangular elements is studied in this paper. The calculation of
the system stiffness matrix is performed by using the strain smoothing technique over the smoothing
domains associated with edges of elements. In order to avoid the transverse shear locking and to improve
the accuracy of the present formulation, the ES-FEM is incorporated with the discrete shear gap (DSG)
method together with a stabilization technique to give a so-called edge-based smoothed stabilized dis-
crete shear gap method (ES-DSG). The numerical examples demonstrated that the present ES-DSG
method is free of shear locking and achieves the high accuracy compared to the exact solutions and oth-
ers existing elements in the literature.

� 2009 Published by Elsevier B.V.
1. Introduction

Static, free vibration and buckling analyses of plate structures
play an important role in engineering practices. Such a large
amount of research work on plates can be found in the literature
reviews [1,2], and especially major contributions in free vibration
and buckling areas by Leissa [3–6], and Liew et al. [7,8].

Owing to limitations of the analytical methods, the finite ele-
ment method (FEM) becomes one of the most popular numerical
approaches of analyzing plate structures. In the practical applica-
tions, lower-order Reissner–Mindlin plate elements are preferred
due to its simplicity and efficiency. However, these low-order plate
elements in the limit of thin plates often suffer from the shear lock-
ing phenomenon which has the root of incorrect transverse forces
under bending. In order to eliminate shear locking, the selective re-
duced integration scheme was first proposed [9–12]. The idea of
the scheme is to split the strain energy into two parts, one due
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to bending and one due to shear. Then, two different integration
rules for the bending strain and the shear strain energy are used.
For example, for the 4-node quadrilateral element, the reduced
integration using a single Gauss point is utilized to compute shear
strain energy while the full Gauss integration using 2 � 2 Gauss
points is used for the bending strain energy. Unfortunately, the re-
duced integration often causes the instability due to rank defi-
ciency and results in zero-energy modes. It is therefore many
various improvements of formulations as well as numerical
techniques have been developed to overcome the shear locking
phenomenon and to increase the accuracy and stability of the solu-
tion such as mixed formulation/hybrid elements [13–23],
Enhanced Assumed Strain (EAS) methods [24–28] and Assumed
Natural Strain (ANS) methods [29–38]. Recently, the discrete shear
gap (DSG) method [39] which avoids shear locking was proposed.
The DSG is somewhat similar to the ANS methods in the terms of
modifying the course of certain strains within the element, but is
different in the aspect of removing of collocation points. The DSG
method works for elements of different orders and shapes [39].

In the effort to further advance finite element technologies, Liu
et al. have applied a strain smoothing technique [40] to formulate a
cell/element-based smoothed finite element method (SFEM or
CS-FEM) [41–49] for 2D solids and then CS-FEM is extended to
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Fig. 1. 3-Node triangular element.
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plate and shell structures [50–52]. By using a proper number of
smoothing cells in each element (for example four smoothing
cells), CS-FEM can increase significantly the accuracy of the solu-
tions [41–52]. Strain smoothing technique has recently been cou-
pled to the extended finite element method (XFEM) [53–55] to
solve fracture mechanics problems in 2D continuum and plates,
e.g. [56]. A node-based smoothed finite element method (NS-
FEM) [57] then has also been formulated to give upper bound solu-
tions in the strain energy and applied to adaptive analysis [58].
Then by combining NS-FEM and FEM with a scale factor
a 2 [0,1], a new method named as the alpha finite element method
(aFEM) [59] is proposed to obtain nearly exact solutions in strain
energy using triangular and tetrahedral elements.

Recently, Liu et al. [60] have proposed an edge-based smoothed
finite element method (ES-FEM) for static, free and forced vibration
analyses of solid 2D mechanics problems. Intensive numerical re-
sults demonstrated that ES-FEM [60] possesses the following
excellent properties: (1) ES-FEM model are often found super-con-
vergent and even more accurate than those of the FEM using quad-
rilateral elements (FEM-Q4) with the same sets of nodes; (2) there
are no spurious non-zeros energy modes found and hence the
method is also temporally stable and works well for vibration anal-
ysis and (3) the implementation of the method is straightforward
and no penalty parameter is used, and the computational efficiency
is better than the FEM using the same sets of nodes. The ES-FEM
has also been further developed to analyze piezoelectric structures
[61] and 2D elastoviscoplastic problems [62]. Further more, the
idea of ES-FEM has been extended for the 3D problems using tetra-
hedral elements to give a so-called the face-based smoothed finite
element method (FS-FEM) [63].

This paper further extends ES-FEM to static, free vibration and
buckling analyses of Reissner–Mindlin plates using only 3-node
triangular meshes which are easily generated for the complicated
domains. The calculation of the system stiffness matrix is per-
formed using strain smoothing technique over the smoothing cells
associated with edges of elements. In order to avoid transverse
shear locking and to improve the accuracy of the present formula-
tion, the ES-FEM is incorporated with the discrete shear gap (DSG)
method [39] together with a stabilization technique [64] to give a
so-called edge-based smoothed stabilized discrete shear gap
method (ES-DSG). The numerical examples show that the present
method is free of shear locking and is a strong competitor to others
existing elements in the literature.

2. Governing equations and weak form

We consider a domain X � R2 occupied by reference middle
surface of plate. Let w and bT = (bx,by) be the transverse displace-
ment and the rotations about the y and x axes, see Fig. 1,
respectively. Then the vector of three independent field variables
for Mindlin plates is

uT ¼ w bx by

� �
: ð1Þ

Let us assume that the material is homogeneous and isotropic with
Young’s modulus E and Poisson’s ratio m. The governing differential
equations of the static Mindlin–Reissner plate are

r � Db
jðbÞ þ ktc ¼ 0 in X;

ktr � cþ p ¼ 0 in X;

w ¼ �w; b ¼ �b on C ¼ @X;
ð2Þ

where t is the plate thickness, p = p(x,y) is a distributed load per an
area unit, k = lE/2(1 + m), l = 5/6 is the shear correction factor, Db is
the tensor of bending modulus, j and c are the bending and shear
strains, respectively, defined by
j ¼ Ldb; c ¼ rwþ b; ð3Þ

where r = (@/@x,@/@y) is the gradient vector and Ld is a differential
operator matrix defined by

LT
d ¼

@
@x 0 @

@y

0 @
@y

@
@x

" #
: ð4Þ

The weak form of the static equilibrium equations in (2) isZ
X

djT Db
jdXþ

Z
X

dcT Ds
cdX ¼

Z
X

dwpdX; ð5Þ

where Db and Ds are the material matrices related to the bending
and shear parts defined by

Db ¼ Et3

12 1� m2ð Þ

1 m 0
m 1 0
0 0 1� mð Þ=2

2
64

3
75; Ds ¼ kt

1 0
0 1

� �
: ð6Þ

For the free vibration analysis of a Mindlin/Reissner plate model, a
weak form may be derived form the dynamic form of energy prin-
ciple under the assumption of the first order shear-deformation
plate theory [8]:Z

X
djT Db

jdXþ
Z

X
dcT Ds

cdXþ
Z

X
duT m€udX ¼ 0; ð7Þ

where du is the variation of displacement field u, and m is the ma-
trix containing the mass density q and thickness t

m ¼ q
t 0 0
0 t3

12 0

0 0 t3

12

2
64

3
75: ð8Þ

For the buckling analysis, there appears nonlinear strain under in-
plane pre-buckling stresses r̂0. The weak form can be reformulated
as [8]Z

X
djT Db

jdXþ
Z

X
dcT Ds

cdXþ t
Z

X
rTdwr̂0rwdX

þ t3

12

Z
X
rTdbx rTdby

h i r̂0 0

0 r̂0

" #
rbx

rby

" #
dX ¼ 0: ð9Þ

Eq. (9) can be rewritten asZ
X

djT Db
jdXþ

Z
X

dcT Ds
cdXþ

Z
X

degð ÞTs eg dX ¼ 0; ð10Þ
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where

r̂0 ¼
r0

x r0
xy

r0
xy r0

y

" #
; s ¼

tr̂0 0 0
0 t3

12 r̂0 0

0 0 t3

12 r̂0

2
64

3
75;

eg ¼

w;x 0 0
w;y 0 0
0 bx;x 0
0 bx;y 0
0 0 by;x

0 0 by;y

2
666666664

3
777777775
: ð11Þ
3. FEM formulation for the Reissner–Mindlin plate

Now, discretize the bounded domain X into Ne finite elements
such that X ¼

SNe
e¼1X

e and Xi \Xj = ;, i – j. The finite element solu-
tion uh ¼ ðwh; bh

x ; b
h
yÞ

T of a displacement model for the Mindlin–
Reissner plate is then expressed as:

uh ¼
XNn

I¼1

NIðxÞ 0 0
0 NIðxÞ 0
0 0 NIðxÞ

2
64

3
75dI; ð12Þ

where Nn is the total number of nodes, NI(x), dI = [wI bxI byI]T are
shape function and the nodal degrees of freedom of uh associated
to node I, respectively.
Fig. 2. 3-Node triangular element and local coordinates.

: centroid of : field node

boundary 
edge m (AB)

Γ
(m)

(m)

A

B

I(lines: AB, BI , IA)

(triangle ABI )

Fig. 3. Division of domain into triangular element and smooth
The bending, shear strains and geometrical strains can be then
expressed as:

j ¼
X

I

Bb
I dI; cs ¼

X
I

Bs
I dI; eg ¼

X
I

Bg
I dI; ð13Þ

where

Bb
I ¼

0 NI;x 0
0 0 NI;y

0 NI;y NI;x

2
64

3
75; Bs

i ¼
NI;x NI 0
NI;y 0 NI

� �
;

Bg
I ¼

NI;x 0 0
NI;y 0 0
0 NI;x 0
0 NI;y 0
0 0 NI;x

0 0 NI;y

2
666666664

3
777777775
: ð14Þ

The discretized system of equations of the Mindlin/Reissner plate
using the FEM for static analysis then can be expressed as,

Kd ¼ F; ð15Þ

where

K ¼
Z

X
Bb
� �T

DbBb dXþ
Z

X
Bsð ÞT DsBs dX ð16Þ

is the global stiffness matrix, and the load vector

F ¼
Z

X
pNdXþ fb ð17Þ

in which fb is the remaining part of F subjected to prescribed
boundary loads

For free vibration, we have

ðK�x2MÞd ¼ 0; ð18Þ

where x is the natural frequency, M is the global mass matrix

M ¼
Z

X
NT mNdX: ð19Þ

For the buckling analysis, we have

ðK� kcrKgÞd ¼ 0; ð20Þ

where

Kg ¼
Z

X
Bgð ÞTsBg dX ð21Þ

is the geometrical stiffness matrix, and kcr is the critical buckling
load.
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Table 1
Patch test.

Element w5 hx5 hy5 mx5 my5 mxy5

MIN3 0.6422 1.1300 �0.6400 �0.0111 �0.0111 �0.0033
DSG3 0.6422 1.1300 �0.6400 �0.0111 �0.0111 �0.0033
ES-DSG3 0.6422 1.1300 �0.6400 �0.0111 �0.0111 �0.0033
Exact 0.6422 1.1300 �0.6400 �0.0111 �0.0111 �0.0033

Fig. 4. Patch test of the element.
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Fig. 6. Clamped plate: (a) central deflection; (b) central moment (t/L = 0.001).
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Now, next section aims to establish a new triangular element
named an edge-based smoothed triangular element with the stabi-
lized discrete shear gap technique (ES-DSG3) for Reissner–Mindlin
plate that is a combination from:

� The ES-FEM [60] for 2D solid mechanics was found to be one of
the ‘‘most” accurate models using triangular elements,

� The discrete shear gap (DSG) technique works well for shear-
locking-free triangular elements based on the Reissner–Mindlin
plate theory [39],

� The stabilization technique [64] helps further to improve the
stability and accuracy.

The formulated ES-DSG3 will be stable and works well for both
thin and thick plates using only triangular elements.

4. A formulation of ES-FEM with stabilized discrete shear
technique

4.1. Brief on the DSG3 formulation

The approximation uh ¼ ½wh bh
x bh

y �
T of 3-node triangular

element as shown in Fig. 2 for the Mindlin–Reissner plate can be
written as
Fig. 5. Square plate model; (a) full clamp
uh ¼
X3

I¼1

NIðxÞ 0 0
0 NIðxÞ 0
0 0 NIðxÞ

2
64

3
75de

I ; ð22Þ
ed plate; (b) simply supported plate.
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where de
I ¼ ½wI bxI byI�

T are the nodal degrees of freedom of uh asso-
ciated to node I and NI(x) is linearly shape functions defined by

N1 ¼ 1� n� g; N2 ¼ n; N3 ¼ g: ð23Þ

The curvatures are then obtained by

jh ¼ Bbde
; ð24Þ

where de is the nodal displacement vector of element, Bb contains
the derivatives of the shape functions that are only constant

Bb ¼ 1
2Ae

0 b� c 0 0 c 0 0 �b 0

0 0 d� a 0 0 �d 0 0 a

0 d� a b� c 0 �d c 0 a �b

2
64

3
75 ð25Þ

with a = x2 � x1, b = y2 � y1, c = y3 � y1, d = x3 � x1 and Ae is the area
of the triangular element.

The geometrical strains are written as:

eg ¼ Bgde
; ð26Þ

where

Bg ¼ 1
2Ae

b� c 0 0 c 0 0 �b 0 0

d� a 0 0 �d 0 0 a 0 0

0 b� c 0 0 c 0 0 �b 0

0 d� a 0 0 �d 0 0 a 0

0 0 b� c 0 0 c 0 0 �b

0 0 d� a 0 0 �d 0 0 a

2
6666666664

3
7777777775
:

ð27Þ

As known in many literatures about Reissner–Mindlin ele-
ments, the shear locking often appears when the thickness plate
becomes small. This is because the transverse shear strains do
not vanish under pure bending conditions. In order to avoid this
shortcoming, Bletzinger et al. [39] have proposed the discrete shear
gap method (DSG) for approximating the shear strains. Results of
the shear strains are briefed as

ch ¼ Bsde
; ð28Þ
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Fig. 7. The convergence rate in strain energy of a clamped plate.
where

Bs ¼ 1
2Ae

b� c Ae 0 c ac
2

bc
2 �b � bd

2 � bc
2

d� a 0 Ae �d � ad
2 � bd

2 a ad
2

ac
2

" #
:

ð29Þ

Substituting Eqs. (25) and (29) into (16) and Eq. (27) into (21), the
global stiffness matrices are now modified as

KDSG3 ¼
XNe

e¼1

KeDSG3; ð30Þ

KDSG3
g ¼

XNe

e¼1

KeDSG3
g ; ð31Þ

where the element stiffness matrix, KeDSG3 and the element geo-
metrical stiffness matrix, KeDSG3

g , of the DSG3 element are given as

KeDSG3 ¼
Z

Xe
ðBbÞT DbBb dXþ

Z
Xe
ðBsÞT DsBs dX

¼ ðBbÞT DbBbAe þ ðBsÞT DsBsAe
; ð32Þ
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Fig. 8. Simply supported plate: (a) central deflection; (b) central moment (t/
L = 0.01).
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KeDSG3
g ¼

Z
Xe

BgT
sBg dX ¼ BgT

sBgAe
: ð33Þ

It was mentioned that a stabilization technique [64] needs to be
added to the original DSG3 element to improve significantly the
accuracy of approximate solutions and to stabilize shear force oscil-
lations presenting in the triangular element. More details for the
stabilized issue of the original DSG3 element can be found in
Bischoff and Bletzinger [65].1 For this remedy, the element stiffness
matrix can be modified as

KeDSG3 ¼
Z

Xe
ðBbÞT DbBb dXþ

Z
Xe
ðBsÞT �DsBs dX

¼ ðBbÞT DbBbAe þ ðBsÞT �DsBsAe
; ð34Þ

where

�Ds ¼ kt3

t2 þ ah2
e

1 0
0 1

� �
; ð35Þ

where he is the longest length of the edges of the element and a is a
positive constant [64].

4.2. Formulation of ES-DSG3

In the ES-FEM, we do not use the compatible strain fields as in
(13) but ‘‘smoothed” strains over local smoothing domains associ-
ated with the edges of elements. Naturally the integration for the
stiffness matrix and the geometrical stiffness matrix is no longer
based on elements, but on these smoothing domains. These local
smoothing domains are constructed based on edges of the
elements such that X ¼

SNed
k¼1X

ðkÞ and X(i) \X(j) = ; for i–j, in which
Ned is the total number of edges of all elements in the entire
problem domain. For triangular elements, the smoothing domain
X(k) associated with the edge k is created by connecting two
end-nodes of the edge to centroids of adjacent elements as shown
in Fig. 3.
1 The DSG3 was initially labeled in the original contribution [39] without any
stabilization. The SDSG3 [65] was then named due to combining the stabilized
technique [64]. For abbreviation, the DSG3 still is used in this paper, but with the
stabilization.
Introducing average curvature, shear strain and geometrical
strain over the cell X(k) defined by

~jk ¼
1

AðkÞ

Z
XðkÞ

jðxÞdX; ~ck ¼
1

AðkÞ

Z
XðkÞ

cðxÞdX;

~eg
k ¼

1

AðkÞ

Z
XðkÞ

egðxÞdX; ð36Þ

where A(k) is the area of the smoothing cell X(k) and is computed by

AðkÞ ¼
Z

XðkÞ
dX ¼ 1

3

XNk
e

i¼1

Ai ð37Þ

where Nk
e is the number of elements attached to the edge k (Nk

e ¼ 1
for the boundary edges and Nk

e ¼ 2 for inner edges as shown in
Fig. 3) and Ai is the area of the ith element attached to the edge k.

Substituting Eqs. (24), (28) and (26) into Eq. (36), the average
strains at edge k can be expressed in the following form

~jk ¼
XNk

n

I¼1

~Bb
I ðxkÞdI; ~ck ¼

XNk
n

I¼1

~Bs
I ðxkÞdI; ~eg

k ¼
XNk

n

I¼1

~Bg
I ðxkÞdI; ð38Þ



Fig. 11. A simply supported skew Morley’s model.
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Fig. 12. Morley plates: (a) central deflection; (b) central max principle moment; (c) central min principle moment.
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where Nk
n is the number of nodes belonging to elements directly

connected to edge k (Nk
n ¼ 3 for boundary edges and Nk

n ¼ 4 for in-
ner edges as shown in Fig. 3) and ~Bb

I ðxkÞ; ~Bs
I ðxkÞ and ~Bg

I ðxkÞ are the
average gradient matrices corresponding to the smoothing cell
X(k) and given by
~Bb
I ðxkÞ ¼

1

AðkÞ
XNk

e

i¼1

1
3

AiB
b
i ;

~Bs
I ðxkÞ ¼

1

AðkÞ
XNk

e

i¼1

1
3

AiB
s
i ;

~Bg
I ðxkÞ ¼

1

AðkÞ
XNk

e

i¼1

1
3

AiB
g
i ; ð39Þ



Fig. 13. Plates and initial mesh: (a) supported plate (b) clamped plate and (c,d) triangular meshes.

Table 2
A non-dimensional frequency parameter - of a SSSS plate (a/b = 1).

t/a Elements Mode sequence number

1 2 3 4 5 6

0.005 DSG3 5.5626 8.8148 11.8281 13.4126 18.1948 19.2897
4.7327 7.4926 8.2237 10.2755 11.6968 12.4915
4.5131 7.1502 7.3169 9.3628 10.3772 10.4461
4.4781 7.0905 7.1718 9.1455 10.1643 10.1814

ES-DSG3 4.9168 8.1996 9.4593 11.5035 14.2016 15.0164
4.5376 7.2981 7.4659 9.6486 10.8937 11.0280
4.4641 7.0870 7.1193 9.0582 10.1444 10.1489
4.4537 7.0565 7.0729 8.9731 10.0410 10.0422

Exact [68] 4.443 7.025 7.025 8.886 9.935 9.935

0.1 DSG3 4.9970 8.1490 9.4311 11.3540 14.1290 14.9353
4.4891 7.0697 7.2530 9.1263 10.2195 10.3361
4.3943 6.8227 6.8587 8.5447 9.4557 9.4616
4.3809 6.7854 6.8037 8.4543 9.3441 9.3457

ES-DSG3 4.7376 7.6580 8.4524 10.1882 12.1227 12.7533
4.4433 6.9495 7.0727 8.8487 9.8575 9.9221
4.3846 6.7922 6.8196 8.4744 9.3666 9.3698
4.3759 6.7692 6.7834 8.4173 9.2968 9.2976

Exact [68] 4.37 6.74 6.74 8.35 9.22 9.22
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where Bb
i (of 3 � 3 matrix), Bs

i (of 2 � 3 matrix) and Bg
i (of 6 � 3 ma-

trix) are obtained from matrices in (25), (29), and (27), respectively.
Therefore the global stiffness and geometrical stiffness matrices

of the ES-DSG3 element are assembled by

~K ¼
XNed

k¼1

~KðkÞ; ð40Þ

~Kg ¼
XNed

k¼1

~KðkÞg ; ð41Þ

where the edge stiffness, ~KðkÞ, and geometrical stiffness, ~KðkÞg , matri-
ces of the ES-DSG3 element are given by
~KðkÞ ¼
Z

XðkÞ
ð~BbÞT Db ~BbdXþ

Z
XðkÞ
ð~BsÞT �Ds ~BsdX

¼ ð~BbÞT Db ~BbAðkÞ þ ð~BsÞT �Ds ~BsAðkÞ; ð42Þ
~KðkÞg ¼
Z

XðkÞ
~BgTs ~BgdX ¼ ~BgTs ~BgAðkÞ: ð43Þ

It can be seen from Eqs. (42) and (43) that the stiffness matrices are
analytically computed from the integrated constant matrices. Note
that the rank of the ES-DSG3 element is similar to that of the DSG3
element and the stability of the ES-DSG3 element is also ensured. In
addition, it is found from numerical experiments of the present



Table 3
A non-dimensional frequency parameter - of a CCCC plate (a/b = 1).

t/a Elements Mode sequence number

1 2 3 4 5 6

0.005 DSG3 8.4197 12.7720 14.9652 17.2579 21.3890 21.7600
6.7161 9.7867 10.5673 12.9981 14.5306 15.3143
6.1786 8.8759 9.0680 11.2452 12.2182 12.2992
6.0889 8.7239 8.8202 10.8567 11.8519 11.8845

ES-DSG3 6.9741 10.1934 11.4756 13.0548 15.4035 15.9360
6.1982 9.0117 9.2894 11.5616 12.7950 13.0357
6.0355 8.6535 8.7081 10.6584 11.7430 11.7720
6.0158 8.6075 8.6353 10.5252 11.6032 11.6293

Exact [69] 5.999 8.568 8.568 10.407 11.472 11.498

0.1 DSG3 6.8748 9.8938 11.0847 12.6362 15.1032 15.6402
5.9547 8.3618 8.6293 10.2985 11.3415 11.5397
5.7616 7.9935 8.0525 9.5772 10.4153 10.4697
5.7337 7.9381 7.9686 9.4589 10.2758 10.3246

ES-DSG3 6.2662 8.7952 9.6625 10.9112 12.6101 13.1360
5.8068 8.0861 8.2701 9.8397 10.7600 10.8960
5.7250 7.9211 7.9627 9.4499 10.2631 10.3126
5.7141 7.8990 7.9206 9.3896 10.1935 10.2411

Exact [69] 5.71 7.88 7.88 9.33 10.13 10.18
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Fig. 14. Convergence of normalized frequency �xh= �xexact with a/b = 1; t/a = 0.005:
(a) SSSS plate; (b) CCCC plate.
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formulation that the stabilized parameter a fixed at 0.05 for static
problems and 0.1 for dynamics problems can produce the reason-
able accuracy for all cases tested. Related to the influence of a on
the accuracy of the solution, the stiffness matrix of ES-DSG3 be-
comes too flexible, if a is chosen too large; and the accuracy of
the solution will reduce due to the oscillation of shear forces, if a
is chosen too small. So far, how to obtain an ‘‘optimal” value of
parameter a is still an open question.
5. Numerical results

The present element formulation has been coded using Matlab
program. For practical applications, we define rotations hx, hy about
the corresponding axes. Hence, the relations hx = �by and hy = bx

have been used to establish the stiffness formulations, see Fig. 1.
For comparison, several other elements such as DSG3, MIN3 [30]
and MITC4 have also been implemented in our package.

5.1. Static analysis

5.1.1. Constant bending patch test
The patch test is introduced to examine the convergence of fi-

nite elements. It is checked if the element is able to reproduce a
constant distribution of all quantities for arbitrary meshes. It is
modeled by several triangular elements as shown in Fig. 4. The
boundary deflection is assumed to be w = (1 + x + 2y + x2 + -
xy + y2)/2. The results shown in Table 1 confirm that, similar to
DSG3 and MIN3 elements, the ES-DSG3 element fulfills the patch
test within machine precision.

5.1.2. Square plates
Fig. 5 describes the model of a square plate (length L, thickness

t) with clamped and simply supported boundary conditions,
respectively, subjected to a uniform load p = 1. The material
parameters are given by Young’s modulus E = 1,092,000 and Pois-
son’s ratio m = 0.3. Uniform meshes N � N with N = 2, 4, 8, 16, 32
are used and symmetry conditions are exploited.

For a clamped plate, the convergence of the normalized deflec-
tion and the normalized moment at the center against the mesh
density N is shown in Fig. 6. The present element is free of shear
locking when the plate thickness becomes small and convergent
to exact solution when the mesh used is fine. It is seen that the
ES-DSG3 achieves the higher accuracy compared to the DSG3 and
MIN3 [30] elements. For very coarse meshes, the 4-node MITC4



Table 4
A non-dimensional frequency parameter - ¼ xa2

ffiffiffiffiffiffiffiffiffiffiffi
qt=D

p
of square plate (t/a = 0.005) with various boundary conditions.

Plate type Elements Mode sequence number

1 2 3 4

SSSF DSG3 11.7720 28.3759 41.9628 61.5092
ES-DSG3 11.6831 27.8382 41.4312 59.6720
Exact [3] 11.685 27.756 41.197 59.066

SFSF DSG3 9.6673 16.3522 37.6792 39.5026
ES-DSG3 9.6425 16.1239 36.9054 39.2167
Exact [3] 9.631 16.135 36.726 38.945

CCCF DSG3 24.2848 41.7698 65.0068 80.9461
ES-DSG3 23.8947 40.1998 63.5127 77.8776
Exact [3] 24.020 40.039 63.493 76.761

CFCF DSG3 22.3437 27.1814 45.8829 62.5225
ES-DSG3 22.1715 26.4259 43.9273 62.9466
Exact [3] 22.272 26.529 43.664 64.466

CFSF DSG3 15.2788 21.0199 41.1975 50.3328
ES-DSG3 15.2035 20.5856 39.9697 49.7767
Exact [3] 15.285 20.673 39.882 49.500

Fig. 15. The cantilever CFFF skew plate.
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plate element [33] is more accurate than the ES-DSG3 element.
However, the ES-DSG3 element becomes more accurate than the
MITC4 element for finer meshes. Fig. 7 plots the convergence rate
in energy error norm for a relation t/L = 0.001. It is found that the
present element gains the highest accuracy in energy for this case.
Fig. 16. The circle plate

Table 5
A non-dimensional frequency parameter - ¼ ðxa2=p2Þ

ffiffiffiffiffiffiffiffiffiffiffi
qt=D

p
of a CFFF rhombic plate.

t/a Elements Mode sequence number

1 2

0.001 DSG3 0.3988 0.9580
ES-DSG3 0.3976 0.9532
Ref. [70] 0.398 0.954

0.2 DSG3 0.3785 0.8262
ES-DSG3 0.3772 0.8192
Ref. [70] 0.377 0.817
For a simply supported plate, Fig. 8 illustrates the convergence
of the normalized deflection and the normalized moment at the
center and the convergence rate in energy error norm with a rela-
tion t/L = 0.01 is given in Fig. 9. It is clear that the ES-DSG3 element
is still superior to the DSG3 and MIN3 elements. For the conver-
gence of the central deflection, the MITC4 element is the most
effective. For the convergence of moment and energy with fine
meshes, the ES-DSG3 element is slightly more accurate than the
MITC4 element.

Now we mention the computational efficiency of present
method compared with FEM models. The program is compiled
by a personal computer with Intel(R) Core (TM) 2 Duo CPU-2
GHz and RAM-2GB. The computational cost is to set up the global
stiffness matrix and to solve the algebraic equations. Owing to
the establishment of the smoothed strains (36), no additional
degrees of freedom are needed in the ES-DSG3. Fig. 10 illustrates
s and initial mesh.

3 4 5 6

2.5996 2.6562 4.2551 5.2267
2.5785 2.6400 4.2209 5.1825
2.564 2.627 4.189 5.131

2.0109 2.1918 3.1631 3.8302
1.9933 2.1785 3.1296 3.7937
1.981 2.166 3.104 3.760



Table 7
The parameterized natural frequencies - ¼ ðxR2Þ

ffiffiffiffiffiffiffiffiffiffiffi
qt=D

p
of a clamped circular plate

with t/(2R) = 0.1.

Mode DSG3 ES-DSG3 Exact [71] ANS4 [72]1 ANS4 [72]2

1 9.3012 9.2527 9.240 9.2605 9.2277
2 18.0038 17.8372 17.834 17.9469 17.8010
3 18.0098 17.8428 17.834 17.9469 17.8010
4 27.6010 27.2344 27.214 27.0345 26.6801
5 27.6082 27.2391 27.214 27.6566 27.2246
6 30.9865 30.5173 30.211 30.3221 29.8562
7 37.9464 37.2817 37.109 37.2579 36.3966
8 37.9817 37.3128 37.109 37.2579 36.3966
9 43.9528 43.0626 42.409 43.2702 42.1089
10 44.0324 43.1328 42.409 43.2702 42.1089
11 48.9624 47.8823 47.340 47.7074 46.0596
12 48.9793 47.8976 47.340 47.8028 46.0985
13 57.2487 55.7747 54.557 56.0625 53.9332
14 57.2776 55.8052 54.557 57.1311 54.7720

Note: The alternative form of MITC4 [72]1 using a consistent mass; the alternative
form of MITC4 [72]2 using a lumped mass.

Fig. 17. A triangular cantilever plates and mesh of it: (a) square tri

Table 6
The parameterized natural frequencies - ¼ ðxR2Þ

ffiffiffiffiffiffiffiffiffiffiffi
qt=D

p
of a clamped circular plate

with t/(2R) = 0.01.

Mode DSG3 ES-
DSG3

ANS4
[72]

ANS9
[73]

Exact
[3]

Exact
[71]

1 10.2941 10.2402 10.2572 10.2129 10.2158 10.216
2 21.6504 21.3966 21.4981 21.2311 21.2600 21.260
3 21.6599 21.4096 21.4981 21.2311 21.2600 21.260
4 35.9885 35.3012 35.3941 34.7816 34.8800 34.877
5 35.9981 35.3277 35.5173 34.7915 34.8800 34.877
6 41.1864 40.3671 40.8975 39.6766 39.7710 39.771
7 53.4374 52.0138 52.2054 50.8348 51.0400 51.030
8 53.5173 52.1013 52.2054 50.8348 51.0400 51.030
9 64.2317 62.3053 63.2397 60.6761 60.8200 60.829
10 64.4073 62.4665 63.2397 60.6761 60.8200 60.829
11 74.2254 71.6554 71.7426 69.3028 69.6659 69.666
12 74.3270 71.7269 72.0375 69.3379 69.6659 69.666
13 91.4366 87.7019 88.1498 84.2999 84.5800 84.583
14 91.5328 87.7861 89.3007 84.3835 84.5800 84.583
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the error in energy norm against the CPU time (s) for clamped
plate. It is observed that the ‘‘over-head” computational cost of
the ES-DSG3 is little larger than those of the MIN3, DSG3 and
MITC4, due to the additional time by the smoothing operations
related to the stiffness matrix. However, in terms of the
computational efficiency (computation time for the same
accuracy) measured in the error of energy norm, the ES-DSG3 is
clearly more effective, compared to all these methods as illus-
trated in Fig. 10.
5.1.3. Skew plate subjected to a uniform load
Let us consider a rhombic plate subjected to a uniform load

p = 1 as shown in Fig. 11. This plate was originally studied by Mor-
ley [66]. Dimensions and boundary conditions are specified in
Fig. 11, too. Geometry and material parameters are length
L = 100, thickness t = 0.1, Young’s modulus E = 10.92 and Poisson’s
ratio m = 0.3.

The values of the deflection and principle moments at the
central point of the ES-DSG3 in comparison with those of other
methods are given in Fig. 12. It is seen again that the ES-DSG3
element shows remarkably excellent performance compared to
the DSG3, MITC4 elements and the list of other elements found
in [67].

5.2. Free vibration of plates

In this section, we investigate the accuracy and efficiency of the
ES-DSG3 element for analyzing natural frequencies of plates. The
plate may have free (F), simply (S) supported or clamped (C) edges.
The symbol, CFSF, for instance, represents clamped, free, supported
and free boundary conditions along the edges of rectangular plate.
A non-dimensional frequency parameter - is often used to stand
for the frequencies and the obtained results use the regular
meshes. The results of the present method are then compared to
analytical solutions and other numerical results which are avail-
able in the literature.
angular plate, (b) rhombic triangular plate, (c,d) its mesh grid.



Table 8
The parameterized natural frequencies - ¼ ðxa2=p2Þ

ffiffiffiffiffiffiffiffiffiffiffi
qt=D

p
of triangular plates with t/a = 0.001.

a0 Elements Mode sequence number

1 2 3 4 5 6

0 DSG3 0.6252 2.3890 3.3404 5.7589 7.8723 10.3026
ES-DSG3 0.6242 2.3789 3.3159 5.7124 7.7919 10.1547
Rayleigh–Ritz [74] 0.624 2.377 3.308 5.689 7.743 –
Pb2 Rayleigh–Ritz [75] 0.625 2.377 3.310 5.689 7.743 –
Experimental [76] 0.588 2.318 3.239 5.540 7.518 –
ANS4 [72] 0.624 2.379 3.317 5.724 7.794 10.200

15 DSG3 0.5855 2.1926 3.4528 5.3481 7.3996 10.2498
ES-DSG3 0.5840 2.1833 3.4163 5.3020 7.3112 10.0779
Rayleigh–Ritz [74] 0.584 2.181 3.409 5.280 7.264 –
Pb2 Rayleigh–Ritz [75] 0.586 2.182 3.412 5.279 7.263 –
ANS4 [72] 0.583 2.181 3.413 5.303 7.289 10.095

30 DSG3 0.5798 2.1880 3.7157 5.5983 7.2814 10.7753
ES-DSG3 0.5766 2.1778 3.6539 5.5361 7.1628 10.5108
Rayleigh–Ritz [74] 0.576 2.174 3.639 5.511 7.108 –
Pb2 Rayleigh–Ritz [75] 0.578 2.178 3.657 5.518 7.109 –
ANS4 [72] 0.575 2.174 3.638 5.534 7.139 10.477

45 DSG3 0.6006 2.3564 4.2795 6.5930 7.8615 11.7850
ES-DSG3 0.5923 2.3359 4.1699 6.4424 7.6658 11.3496
Rayleigh–Ritz [74] 0.590 2.329 4.137 6.381 7.602 –
Pb2 Rayleigh–Ritz [75] 0.593 2.335 4.222 6.487 7.609 –
ANS4 [72] 0.588 2.324 4.126 6.381 7.614 11.224

60 DSG3 0.6497 2.7022 5.6491 8.3505 10.7757 14.6003
ES-DSG3 0.6261 2.6101 5.4283 7.7333 10.3756 13.3296
Rayleigh–Ritz [74] 0.617 2.576 5.376 7.524 10.285 –
Pb2 Rayleigh–Ritz [75] 0.636 2.618 5.521 8.254 10.395 –
ANS4 [72] 0.613 2.564 5.353 7.460 10.306 12.942
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5.2.1. Square plates
We consider square plates of length a, width b and thickness t.

The material parameters are Young’s modulus E = 2.0 � 1011, Pois-
son’s ratio m = 0.3 and the density mass q=8000. The plate is mod-
eled with uniform meshes of 4, 8, 16 and 22 elements per each
side. A non-dimensional frequency parameter - ¼ ðx2qa4t=DÞ1=4

is used, where D ¼ Et3= 12ð1� m2Þ
	 


is the flexural rigidity of the
plate.

The first problem considered is a SSSS thin and thick plate cor-
responding to length-to-width ratios, a/b = 1 and thickness-to-
length t/a = 0.005 and t/a = 0.1. The geometry of the plate and its
mesh grid are shown in Fig. 13a and c-d, respectively. Table 2 gives
the convergence of six lowest frequencies corresponding to meshes
using 4 � 4, 8 � 8, 16 � 16 and 22 � 22 rectangular elements. It is
observed that the results of ES-DSG3 agree well with the analytical
results [68] and are more accurate than those of the DSG3 element
for both thin and thick plates.

The second problem is a CCCC square plate shown in Fig. 13b.
Meshes are obtained the same as the SSSS plate case. Table 3 shows
the convergence of eight lowest modes of a CCCC plate. It is found
again that the ES-DSG3 element is better than the DSG3 element.
Fig. 14 also illustrates clearly the convergence of computed
frequencies (-h/-exact) of SSSS and CCCC plates.

We further study the five sets of various boundary conditions in
this example: SSSF, SFSF, CCCF, CFCF, CFSF. In this case, a 20 � 20
regular mesh is utilized for a square plate with various boundary
conditions and the first four lowest frequencies are presented in
Table 4. As a result, the ES-DSG3 element is almost better than
the DSG3 element and gives a good agreement with the exact solu-
tion [3] for all frequencies examined in this problem.

5.2.2. The parallelogram plates
Let us consider the thin and thick cantilever rhombic (CFFF)

plates. The geometry of the plate is illustrated in Fig. 15a with skew
angle a = 600. The material parameters are Young’s modulus
E = 2.0 � 1011, Poisson’s ratio m = 0.3 and the density mass q =
8000. A non-dimensional frequency parameter - is used. The total
number of DOF used to analyze the convergence of modes is 1323
dofs. Table 5 shows the convergence of six lowest frequencies of a
CFFF rhombic plate. The solution of the ES-DSG3 element is often
found closer to that of the semi-analytical method using the pb-2
Ritz method [70] than that of the DSG3 element.

5.2.3. Circle plates
In this example, a circular plate with the clamped boundary is

studied as shown in Fig. 16. The material parameters are Young’s
modulus E = 2.0 � 1011, Poisson’s ratio m = 0.3, the radius R = 5
and the density mass q = 8000. The plate is discretized into 848 tri-
angular elements with 460 nodes. Two thickness-span ratios h/
(2R) = 0.01 and 0.1 are considered. As shown in Table 6, the fre-
quencies obtained from the ES-DSG3 element are closer to analyt-
ical solutions in Refs. [3,71] than that of the DSG3 element and is a
good competitor to quadrilateral plate elements such as the As-
sumed Natural Strain solutions (ANS4) [72] and the higher order
Assumed Natural Strain solutions (ANS9) [73]. In case of the thick-
ness-span ratio h/(2R) = 0.1, the ES-DSG3 results also are very good
in comparison to the ANS4 element that used 432 quadrilateral
elements (or 864 triangular elements), cf. Table 7.

5.2.4. Triangular plates
Let us consider cantilever (CFF) triangular plates with various

shape geometries, see Fig. 17a and b. The material parameters
are Young’s modulus E = 2.0 � 1011, Poisson’s ratio m = 0.3 and the
density mass q = 8000. A non-dimensional frequency parameter
- = xa2(q t/D)1/2/p2 of triangular square plates with the aspect ra-
tio t/a = 0.001 and 0.2 are calculated. The mesh of 744 triangular
elements with 423 nodes is used to analyze the convergence for
modes via various skew angles such as a = 0, 15, 30, 45, 60. Table 8
gives the convergence of six lowest modes of the thin triangular
plate (t/a = 0.001). In addition, the convergence of the frequencies
is also illustrated in Fig. 18. The ES-DSG3 element is also compared
to the alternative MITC4 finite element formulation [72] (the As-
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Fig. 18. Variation of the first five frequencies of triangular plate with angle a (t/a = 0.001).
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sumed Natural Strain method (ANS4) using a mesh of 398 4-node
quadrilateral elements or 796 triangular elements) and two other
well-known numerical methods such as the Rayleigh–Ritz method
[74] and the pb-2 Ritz method [75]. From the results given in Ta-
ble 8 and Fig. 18, it is observed that the frequencies of the ES-
DSG3 are often bounded by the solutions of the Rayleigh–Ritz



Table 9
The parameterized natural frequencies - ¼ ðxa2=p2Þ

ffiffiffiffiffiffiffiffiffiffiffi
qt=D

p
of triangular plates with the aspect ratio a/b = 1 and t/b = 0.2.

a0 Elements Mode sequence number

1 2 3 4 5 6

0 DSG3 0.5830 1.9101 2.4176 3.9772 5.0265 5.9521
ES-DSG3 0.5823 1.9040 2.4083 3.9559 4.9954 5.8994
Pb2 Rayleigh–Ritz [75] 0.582 1.900 2.408 3.936 – –
FEM [77] 0.581 1.901 2.410 – – –
ANS4 [72] 0.582 1.915 2.428 3.984 5.018 5.944

15 DSG3 0.5449 1.7803 2.3959 3.6668 4.8504 5.6057
ES-DSG3 0.5441 1.7749 2.3854 3.6467 4.8208 5.5385
Pb2 Rayleigh–Ritz [75] 0.544 1.771 2.386 3.628 – –
FEM [77] 0.543 1.770 2.388 – – –
ANS4 [72] 0.545 1.764 2.420 3.608 4.820 5.431

30 DSG3 0.5339 1.7815 2.4356 3.6085 4.7829 5.4532
ES-DSG3 0.5328 1.7754 2.4206 3.5842 4.7444 5.3377
Pb2 Rayleigh–Ritz [75] 0.533 1.772 2.419 3.565 – –
FEM [77] 0.532 1.769 2.419 – – –
ANS4 [72] 0.532 1.773 2.437 3.591 4.765 5.323

45 DSG3 0.5412 1.8977 2.5304 3.7518 4.8188 5.4304
ES-DSG3 0.5391 1.8882 2.5004 3.7035 4.6800 5.2256
Pb2 Rayleigh–Ritz [75] 0.540 1.885 2.489 3.674 – –
FEM [77] 0.538 1.881 2.482 – – –
ANS4 [72] 0.541 1.884 2.518 3.748 4.740 5.292

60 DSG3 0.5634 2.0837 2.5355 4.0862 4.6612 5.9782
ES-DSG3 0.5588 2.0623 2.4356 3.8009 4.3393 5.5835
Pb2 Rayleigh–Ritz [75] 0.559 2.059 2.396 3.590 – –
FEM [77] 0.555 2.047 2.386 – – –
ANS4 [72] 0.559 2.095 2.483 3.910 4.517 5.763

Fig. 19. Rectangular plates: (a) Axial compression, (b) biaxial compression, (c) shear in-plane, (d) regular mesh.

Table 10
The factors K of axial buckling loads along the x axis of rectangular plates with length-to-width ratios a/b = 1 and thickness-to-width ratios t/b = 0.01.

Plates type Elements 4 � 4 8 � 8 12 � 12 16 � 16 20 � 20

SSSS DSG3 7.5891 4.8013 4.3200 4.1590 4.0889
ES-DSG3 4.7023 4.1060 4.0368 4.0170 4.0089

CCCC DSG3 31.8770 14.7592 11.9823 11.0446 10.6282
ES-DSG3 14.7104 11.0428 10.3881 10.2106 10.1410
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and the pb-2 Ritz models. Note that our method is simply based on
the formulation of 3-node triangular elements without adding any
additional DOFs. Therefore, the ES-DSG3 is very promising to pro-
vide an effective tool together with existing numerical models.
Also, Table 9 again shows that the ES-DSG3 works well for this
thick plate problem.



Table 13
The factor Kh of axial buckling loads along the x axis of rectangular plates with various
length-to-width ratios and various thickness-to-width ratios.

a/b t/b DSG3 ES-DSG3 Meshfree [8] Pb-2 Ritz [80]

0.5 0.05 6.0478 5.9873 6.0405 6.0372
0.1 5.3555 5.3064 5.3116 5.4777
0.2 3.7524 3.7200 3.7157 3.9963

1.0 0.05 3.9786 3.9412 3.9293 3.9444
0.1 3.7692 3.7402 3.7270 3.7865
0.2 3.1493 3.1263 3.1471 3.2637

1.5 0.05 4.3930 4.2852 4.2116 4.2570
0.1 4.0604 3.9844 3.8982 4.0250
0.2 3.2014 3.1461 3.1032 3.3048

2.0 0.05 4.1070 3.9811 3.8657 3.9444
0.1 3.8539 3.7711 3.6797 3.7865
0.2 3.2023 3.1415 3.0783 3.2637

2.5 0.05 4.3577 4.1691 3.9600 4.0645
0.1 4.0644 3.8924 3.7311 3.8683
0.2 3.2393 3.1234 3.0306 3.24214 6 8 10 12 14 16 18 20
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5.3. Buckling of plates

In the following examples, the factor of buckling load is defined
as K = kcrb

2/(p2D) where b is the edge width of the plate, kcr the crit-
ical buckling load. The material parameters are Young’s modulus
E = 2.0 � 1011, Poisson’s ratio m=0.3.

5.3.1. Simply supported rectangular plates subjected to uniaxial
compression

Let us first consider a plate with length a, width b and thickness
t subjected to a uniaxial compression. Simply supported (SSSS) and
clamped (CCCC) boundary conditions are assumed. The geometry
and regular mesh of the plate are shown in Fig. 19a and d, respec-
tively. Table 10 gives the convergence of the buckling load factor
corresponding to the meshes of 4 � 4, 8 � 8, 12 � 12, 16 � 16
and 20 � 20 rectangular elements. Fig. 20 plots the convergence
of the normalized buckling load Kh/Kexact of square plate with the
thickness ratio t/b = 0.01, where Kh, Kexact are the buckling load of
numerical methods and the buckling load of the analytical solution
[78], respectively. It is evident that the ES-DSG3 element converges
to the exact solution faster than the DSG3 element. In addition, the
performance of the ES-DSG3 element is also compared with several
Table 12
The factor Kh of axial buckling loads along the x axis of rectangular plates with various length-to-width ratios a/b = 1 and various thickness-to-width ratios.

t/b Plate types DSG3 ES-DSG3 RPIM [79] Pb-2 Ritz [80]

0.05 SSSS 3.9786 3.9412 3.9464 3.9444
CCCC 9.8284 9.5426 9.5819 9.5586
FCFC 3.8365 3.7654 3.8187 3.8005

0.1 SSSS 3.7692 3.7702 3.7853 3.7873
CCCC 8.2670 8.2674 8.2931 8.2921
FCFC 3.4594 3.4966 3.5138 3.5077

Table 11
The factor Kb of axial buckling loads along the x axis of rectangular plates with length-to-width ratios a/b = 1 and thickness-to-width ratios t/b = 0.01.

Plate types DSG3 ES-DSG3 Liew and Chen [79] Ansys [79] Timoshenko and Gere [78] Tham and Szeto [82] Vrcelj and Bradford [83]

SSSS 4.1590
(3.97%)

4.0170
(0.4%)

3.9700
(�0.75%)

4.0634
(1.85%)

4.00
(0.0%)

4.00
(0.0%)

4.0006
(0.02%)

CCCC 11.0446
(9.68%)

10.2106
(1.4%)

10.1501
(0.8%)

10.1889
(1.18%)

10.07
(0.0%)

10.08
(0.1%)

10.0871
(0.17%)
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Table 14
The factors Kh of biaxial buckling loads of rectangular plates with length-to-width ratios a/b = 1, thickness-to-width ratios t/b = 0.01 and various boundary conditions.

Plates type DSG3 ES-DSG3 Timoshenko and Gere [78] Tham and Szeto [82] Vrcelj and Bradford [83]

SSSS 2.0549 2.0023 2.00 2.00 2.0008
CCCC 5.6419 5.3200 5.31 5.61 5.3260
SCSC 4.0108 3.8332 3.83 3.83 3.8419

Table 15
The factors Kh of shear buckling loads of simply supported rectangular plates with
various length-to-width ratios, choose t/b = 0.01.

a/b DSG3 ES-DSG3 Meshfree [8] Exact [81]

1.0 9.5195 9.2830 9.3962 9.34
2.0 6.7523 6.4455 6.3741 6.34
3.0 6.5129 5.8830 5.7232 5.784
4.0 6.3093 5.6732 5.4367 5.59
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other methods in the literature. Table 11 shows the factor values Kh

using 2 � 16 � 16 triangular elements, and the relative error per-
centages compared with exact results are given in parentheses. It
is found that the ES-DSG3 results agree well with analytical solu-
tion [78], spline finite strip methods [82,83] and the radial point
interpolation meshfree method [79].

Next we consider the buckling load factors of SSSS, CCCC, FCFC
plate with thickness-to-width ratios t/b = 0. 05; 0.1. The results are
given in Table 12. The present results are compared with the radial
point interpolation meshfree method [79], the pb-2 Ritz method
[80] and a good agreement is found.

More details, we also consider simply supported plates with
various thickness-to-width ratios, t/b = 0.05; 0.1; 0.2 and length-
to-width ratios, a/b = 0.5; 1.0; 1.5; 2.0; 2.5. Table 13 and Fig. 21
show the buckling factors using the regular mesh of 16 � 16
rectangular elements. The DSG3 and ES-DSG3 results are also
compared to the pb-2 Ritz and meshfree method [8]. It is seen that
the ES-DSG3 exhibits a good agreement with meshfree method and
the pb-2 Ritz method [80]. Fig. 22 also depicts the axial buckling
modes of simply-supported rectangular plates with thickness-to-
width ratios t/b = 0.01 and various length-to-width ratios, a/
b = 1.0; 1.5; 2.0; 2.5.
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5.3.2. Simply supported rectangular plates subjected to biaxial
compression

The square plate subjected to biaxial compression is considered.
The geometry of the plates is shown in Fig. 19b. Table 14 gives the
shear buckling factor of square plate subjected biaxial compression
with three essential boundary conditions (SSSS, CCCC, SCSC) using
2 � 16 � 16 triangular elements. It can be seen that the ES-DSG3
element matches well with the analytical solution [78] and the
spline finite strip methods [82,83].

5.3.3. Simply supported rectangular plates subjected to in-plane pure
shear

Consider the simply supported plate subjected to in-plane shear
shown in Fig. 19c. The factors Kh of shear buckling loads of this
plate are calculated using 16 � 16 rectangular elements. The shear
buckling factors with thickness-to-width ratio, t/b = 0.001 and
length-to-width ratios, a/b = 1.0; 2.0; 3.0; 4.0 are listed in Table
15. The present results are compared to the exact solutions in
[81] and the meshfree solution [8]. It can be seen that the ES-
DSG3 element agrees well with the exact solution. We can be con-
cluded that the factor of buckling load of the plate is well approx-
imated by the present method. The convergence of the shear
buckling load of a support plate is illustrated in Fig. 23. The shear
buckling load decreases rapidly as length-to-width ratios increase.
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Table 16
The factors Kh of shear buckling loads of rectangular plates with length-to-width ratios a/b = 1, thickness-to-width ratios t/b = 0.01 and various boundary condition.

Plates type DSG3 ES-DSG3 Timoshenko and Gere [78] Tham and Szeto [82] Vrcelj and Bradford [83]

SSSS 9.5195 9.2830 9.33 9.40 9.3847
CCCC 15.6397 14.6591 14.66 14.58 14.6601
SCSC 13.1652 12.5533 12.58 12.58 12.5997
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Fig. 24 shows the shear buckling modes of simply-supported rect-
angular plates with thickness-to-width ratios t/b = 0.01 and vari-
ous length-to-width ratios, a/b = 1.0; 2.0; 3.0; 4.0.

Now we consider the square subjected to in-plane shear with
three essential boundary conditions, SSSS, CCCC, SCSC. The present
result is given in Table 16. It can be again seen that the ES-DSG3
element is very good in comparison to the analytical solution
[78], the spline finite strip methods [82,83].

6. Conclusions

An edge-based smoothed finite element method with the stabi-
lized Discrete Shear Gap technique using triangular elements is
formulated for static, free vibration and buckling analyses of Reiss-
ner–Mindlin plates. Through the formulations and numerical
examples, some concluding remarks can be drawn as follows:

� The ES-DSG3 uses only three DOFs at each vertex node without
additional degrees of freedom and no more requirement of high
computational cost.

� The ES-DSG3 element is more accurate than the DSG3, MIN3
triangular elements, and often found more accurate than the
well-known MITC4 element when the same sets of nodes are
used for all cases studied. The results of the ES-DSG3 element
are also in a good agreement with analytical solution and com-
pared well with results of several other published elements in
the literature.

� For free vibration and buckling analyses, no spurious non-zero
energy modes are observed and hence the ES-DSG3 element is
stable temporally. The ES-DSG3 element gives more accurate
results than the DSG3 element and shows also a strong compet-
itor to existing complicated models such as the Rayleigh–Ritz
method, the pb-2 Ritz method, the spline finite strip and the
meshfree approaches.

Through the obtained results, the present method is thus very
promising to provide a simple and effective tool for analyses of
plate structures.
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